

BÖHLER FOX EV 100

Stick electrode low-alloyed, high strength

QT-steels, low a	CrMo B 4 2 F s and typica ectrode with teels. The ductility do prpass temper very low hydro tempered fin alloyed up to	al fields of ap high ductility own to –40 °C erature and p rogen conten ne-grained co 1000 MPa te	8-G and crac C. Easy w ost weld ts (HD < nstructio ensile str	cking resistan veld ability in heat treatme 5 ml/100 g). nal steels wit	all po nt as	ositions e required	G trength except v d by the	vertica base	al-down. e metal.	
Characteristics Basic coated electronstructional st Low-temperature Preheating, inter Deposits have very Base materials Quenched and t QT-steels, low a	s and typica ectrode with teels. re ductility do rpass tempe very low hyde tempered fin alloyed up to	al fields of ap high ductility own to –40 °C erature and p rogen conten ne-grained co 1000 MPa te	oplicatio and crac C. Easy w ost weld ts (HD < nstructio ensile str	cking resistan veld ability in heat treatme 5 ml/100 g). nal steels wit	all po nt as	or high-s ositions e required	trength except \ d by the	vertica base	al-down. e metal.	
Basic coated electronal structional structional structional structure Preheating, inter Deposits have v Base materials Quenched and to QT-steels, low a	ectrode with teels. re ductility do rpass tempe very low hydr tempered fin alloyed up to	high ductility own to –40 °C erature and p rogen conten ne-grained co 1000 MPa te	and crac c. Easy w ost weld ts (HD < nstructio	cking resistan veld ability in heat treatme 5 ml/100 g). nal steels wit	all po nt as	ositions e required	except v d by the	vertica base	al-down. e metal.	
constructional st Low-temperature Preheating, inte Deposits have v Base materials Quenched and t QT-steels, low a	teels. e ductility do rpass tempe very low hydr tempered fin alloyed up to	own to –40 °C erature and p rogen conten ne-grained co 1000 MPa te	C. Easy w ost weld ts (HD < nstructio ensile str	veld ability in heat treatme 5 ml/100 g). nal steels wit	all po nt as	ositions e required	except v d by the	vertica base	al-down. metal.	
Quenched and t QT-steels, low a	tempered fin alloyed up to	1000 MPa te	ensile str		h 89() MPa yi	eld stre	ngth,		
QT-steels, low a	alloyed up to	1000 MPa te	ensile str		h 89() MPa yi	eld stre	ngth,		
Quenched and tempered fine-grained constructional steels with 890 MPa yield strength, QT-steels, low alloyed up to 1000 MPa tensile strength, XABO 890 Typical analysis of all-weld metal (wt%)										
		•	,							
C	Si	Mr	١	Cr	Ni		Мо		V	
wt% 0.0	6 0.3	35 1.7	7	0.7	2.5		0.5		0.07	
Mechanical pro	operties of a	all-weld meta	al							
Condition Yiel R _{p0,1}	ld strength	Tensile strength R_m		Elongation A $(L_0=5d_0)$	Impact w ISO-V K					
MPa	MPa MPa			% -		+20 °C		–40 °C		
u ≥ 89	ı ≥ 890 9		980 – 1180		≥ 15 ≥		2 47		≥ 47	
u untreated, as welded										
Operating data	l									
Î Î DC (+) n		300 – 350 °C, FOX		Electrode lentification: EV 100 12018-G 4 Mn2Ni1CrMo B		ø (mr 3.2 4.0 5.0	3	mm 50 50 50	Amps A 100 – 140 140 – 180 190 – 230	
Approvals										
TÜV (07629.), VG 95132, CE										