FONTARGEN HTL 1A Nickel-based high-temperature brazing paste

DIN EN ISO 17672:	Ni 610
DIN EN 1044:	NI 1A1
DIN 8513:	L-Ni1a
EN ISO 3677:	B-Ni74CrFeSiB-980/1070
AWS:	BNi-1A
AMS:	4776 F
Boing:	BTS 1025-5

Composition, typical analysis (% w/w):

Cr	S	i	В	Fe	С	Р	Ni
14	4.	5	3.2	4.5	< 0.06	< 0.02	Remainder

fontargen brazing

Mechanical and physical properties:

Working temperature:	1077 - 1204 °C
Melting range:	980 - 1070 °C
Gap width:	0.05 - 0.1 mm
Viscosity range:	55.000 - 65.000 mPas
Metal content:	≈ 90 % w/w
Oxidationresistant up to:	1200 °C
Shear strength [N/mm ²]:	383 (1.4006)
(at room temperature)	334 (1.4301)

Characteristics / Applications:

HTL1A is an alloy whose composition is identical to HTL 1, however, with a max. C-content of 0.06 %. This brazing alloy is utilised for parts which are used in the high-temperature range as well as in the cooling technology. This brazing alloy shows good gap bridging properties. Suitable for slowly heated assemblies made of steel, nickel, cobalt and special metals. This brazing alloy achieves good stability, is heat- and oxidationresistant and offers good diffusibility. Better flowing properties compared to HTL 1.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
\square	\boxtimes	\boxtimes

Availability:

Paste HTL 1A AP	Powder HTL 1A
	\boxtimes

13/10/JL/1