

# Avesta FCW-2D 308L/MVR

GMAW flux cored wire, high alloyed, special application

### Classification

| EN ISO 17633-A   | EN ISO 17633-B | AWS A5.22    |  |  |  |  |
|------------------|----------------|--------------|--|--|--|--|
| T 19 9 L R M/C 3 | -              | E308LT0-4/-1 |  |  |  |  |

#### Characteristics and typical fields of application

Avesta FCW-2D 308L/MVR is designed for welding 1.4301/ASTM 304 type stainless steels. It also suitable for welding steels that are stabilised with titanium or niobium, such as 1.4541/ASTM 321, 1.4878/321H and 1.4550/347 in cases where the construction will be operating with the temperatures below 400°C. For higher temperatures a niobium stabilised consumable such as Avesta FCW-2D 347/MVNb is required.

Avesta FCW-2D 308L/MVR provides excellent weldability in flat as well as horizontal-vertical position. Welding in vertical-up and overhead positions is preferably done using FCW 308L/MVR-PW. FCW-2D 308L/MVR diam. 0.9 mm can be welded in all positions.

Avesta FCW-2D 308L/MVR should be welded using direct current positive polarity (DC+) with a recommended wire stick-out of 15 – 20 mm.

#### **Corrosion resistance:**

Very good under fairly severe conditions, e.g. in oxidising acids and cold or dilute reducing acids.

| Base Materials |        |       |        |                |      |  |  |
|----------------|--------|-------|--------|----------------|------|--|--|
| Outokumpu      | EN     | ASTM  | BS     | NF             | SS   |  |  |
| 4301           | 1.4301 | 304   | 304S31 | Z7 CN 18-09    | 2333 |  |  |
| 4307           | 1.4307 | 304L  | 304S11 | Z3 CN 18-10    | 2352 |  |  |
| 4311           | 1.4311 | 304LN | 304S61 | Z3 CN 18-10 Az | 2371 |  |  |
| 4541           | 1.4541 | 321   | 321S31 | Z6 CNT 18-10   | 2337 |  |  |

#### Typical analysis of all-weld metal (wt.-%)

|      | С     | Si  | Mn  | Cr   | Ni   |
|------|-------|-----|-----|------|------|
| wt-% | 0.025 | 0.8 | 1.5 | 19.3 | 10.9 |

#### Mechanical properties of all-weld metal

| Heat-<br>treat-<br>ment | Yield<br>strength<br>R <sub>e</sub> N/mm <sup>2</sup> | Tensile<br>strength<br>R <sub>m</sub> N/mm <sup>2</sup> | Elongation<br>(L <sub>0</sub> =5d <sub>0</sub> ) | Impact work<br>ISO-V KV J |        |        | Hardness |
|-------------------------|-------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|---------------------------|--------|--------|----------|
|                         | MPa                                                   | MPa                                                     | %                                                | +20 °C                    | −40 °C | -196°C | HB       |
| u                       | 380                                                   | 560                                                     | 35                                               | 60                        | 50     | 35     | 200      |

u untreated, as-welded – shielding gas Argon + 18 % CO<sub>2</sub>

#### **Operating data**

|    | Polarity | shielding gases:              | re-drying if   | amps A    | voltage V | ø (mm) |  |  |
|----|----------|-------------------------------|----------------|-----------|-----------|--------|--|--|
|    | DC (+)   | Ar + 15 – 25% CO <sub>2</sub> | necessary:     | 100 – 160 | 21 - 28   | 0.9    |  |  |
| 2+ |          | 100 % CO <sub>2</sub>         | 150°C / 24 hrs | 125 – 280 | 20 – 34   | 1.2    |  |  |
|    |          |                               |                | 200 – 350 | 25 - 35   | 1.6    |  |  |

Ar + 15 – 25% CO<sub>2</sub> offers the best weldability, but 100% CO<sub>2</sub> can be also used (voltage should be increased by 2V). Gas flow rate 20 - 25 l/min.

## Approvals

All information provided is based upon careful investigation and intensive research.

However, we do not assume any liability for correctness and information is subject to change without notice.