

Avesta FCW-2D 309L

GMAW flux cored wire, high alloyed, special application

Classification					
ø 1.2 mm / ø 1.6 mm					
EN ISO 17633-A	EN ISO 17633-B	AWS A5.22			
T 23 12 L R M21 3	TS 309L-F M21 0	E309LT0-4			
T 23 12 L R C1 3	TS 309L-F C1 0	E309LT0-1			
ø 0.9 mm					
EN ISO 17633-A	EN ISO 17633-B	AWS A5.22			
T 23 12 L P M21 1	TS 309L-F M21 1	E309LT1-4			
T 23 12 L P C1 1	TS 309L-F C1 1	E309LT1-1			

Characteristics and typical fields of application

Avesta FCW-2D 309L is a high-alloyed flux cored wire, primarily intended for surfacing low-alloy steels and for dissimilar welds between mild steel and stainless steels.

Avesta FCW-2D 309L provides excellent weldability in flat as well as horizontal-vertical position.

Corrosion resistance:

When used for overlay welding on mild steel a corrosions resistance equivalent to that of 1.4301/304 is obtained already in the first layer.

Base Materials

dissimilar joint welds: of and between high-strength, mild steels and low-alloyed QT-steels, stainless, ferritic Cr- and austenitic Cr-Ni- steels, manganese steels

surfacing: for the first layer of corrosion resistant weld surfacing on ferritic- perlitic steels in boiler and pressure vessel parts up to fine-grained steel S500N, as well as of high temperature steels like 22NiMoCr4-7, 20MnMoNi5-5 and G18NiMoCr3-7

Typical analysis of all-weld metal (wt%)						
	С	Si	Mn	Cr	Ni	
wt-%	0.03	0.7	1.4	23.0	12.5	

Mechanical properties of all-weld metal

Condition	Yield strength R _{p0.2}	Tensile strength R _m	Elongation $(L_0=5d_0)$	Impact work ISO-V KV J		Hardness
	MPa	MPa	%	+20°C	-60°C	HB
u	400	540	33	60	45	210
u untreated as-welded – shielding gas Argon + 18% CO						

unifeated, as-welded shielding gas Argon + 10% 002

Avesta FCW-2D 309L

GMAW flux cored wire, high alloyed, special application

Operating data

		Polarity	Shielding gases:	Amps A	Voltage V	ø (mm)
		DC (+)	Ar + 15 – 25% CO ₂	100 – 160	21 – 30	0.9
			100% CO ₂	125 – 280	20 – 34	1.2
				200 - 350	25 – 35	1.6
ø 0,9 m	ø 1,2 mm		Redrying:			
	ø 1,6 mm		if necessary			
			150°C / 24 h			

Welding with standard GMAW power source possible, slightly trailing torch position (angle appr. 80°), when using 100% CO₂ as shielding gas it is necessary to increase the voltage by 2 V; the gas flow should be 15-18 l/min. Stick out 15-20mm;Preheat and interpass temperatures as required by the base metal.

Approvals

TÜV(10747.), DB (43.014.41), CWB, DNV, GL, LR, RINA