

Solid wire high-alloyed, stainless

Classifications

EN ISO 14343-A	EN ISO 14343-B	AWS A5.9
G 13	SS(410)	ER410 (mod.)

Characteristics and typical fields of application

GMAW solid wire of type G 13 / ER 410 (mod.) predominantly used for surfacing of sealing faces of valves for gas, water, and steam piping systems at service temperatures up to +450 °C. The machinability of the weld metal depends largely upon the kind of base metal and degree of dilution. Joint welding of similar 13 % chromium steels shows matching colour of the weld metal and very good ability to polishing. Good feeding, welding and wetting characteristics.

Base materials

Surfacings: all weld able substrates, unalloyed and low-alloyed

Joint welds: corrosion resistant Cr-steels as well as other similar-alloyed steels with C-contents ≤ 0.20 % (repair welding); heat resistant Cr-steels of similar chemical composition. Be careful with dilution and welding technology.

1.4006 X12Cr13, 1.4021 X20Cr13 AISI 410, 420

Typical analysis of solid wire (wt.-%)

	C	Si	Mn	Cr
wt%	0.06	0.7	0.6	13.6

Mechanical properties of all-weld metal

Condition	Yield strength $R_{p0,2}$	Tensile strength R _m	Elongation A $(L_0=5d_0)$	Impact work ISO-V KV J	Brinell-hardness
	MPa	MPa	%	+20 °C	HB
u					320
а	≥ 250	≥ 450	≥ 15		200

u untreated, as welded – shielding gas Ar + 8 – 10 % CO₂

a annealed, 720 °C/2 h – shielding gas Ar + 8 – 10 % CO_2

The hardness of the deposit is greatly influenced by the degree of dilution with the base metal (depending on the relevant welding conditions) and by its chemical composition. As a general rule it can be observed that the higher the degree of dilution and the C-content of the base metal, the higher the deposit hardness. Gas mixtures containing CO_2 result in higher deposit hardness then CO_2 -free gas mixtures.

Operating data

	Polarity:	Shielding gases:	ø (mm)
\rightarrow	DC (+)	Argon + 8 – 10 % CO ₂	1.2
		(Argon + 3 % O_2 or max. 5 % CO_2	1.6
		(shielding gas depends on the application)	

For joint welding preheating to +200 - 300 °C is recommended. Tempering at +700 - 750 °C to increase toughness.

Approvals SEPROZ

All information provided is based upon careful investigation and intensive research.