

## Böhler 3 NiCrMo 2.5-UP // BB 24

SAW wire/flux combination, low-alloyed, high strength

| Classifications           |                             |                       |                       |  |  |  |
|---------------------------|-----------------------------|-----------------------|-----------------------|--|--|--|
| SAW solid wire            |                             | SAW flux              |                       |  |  |  |
| EN ISO 26304-A            | AWS A5.23                   | EN ISO 14174          |                       |  |  |  |
| S3Ni2.5CrMo               | EM4 (mod.)                  | SA FB 1 65 DC H5      |                       |  |  |  |
| SAW wire/flux combination |                             |                       |                       |  |  |  |
| EN ISO 26304-A            | EN ISO 26304-B              | AWS A5.23             | AWS A5.23M            |  |  |  |
| S 69 6 FB S3Ni2.5CrMo     | SU 76A6 FB<br>(SUN4C1M3) H5 | F11A8-EM4 (mod.)-M4H4 | F76A6-EM4 (mod.)-M4H4 |  |  |  |

## Characteristics and typical fields of application

Wire / Flux combination for joint welding of high strength steels with a minimum yield strength of 690 MPa.

Depending on the annealing temperature yield strength of approx. 470-600 MPa are achievable. The flux reacts metallurgically Mn-neutral.

The sub-arc wire/flux combination produces very good low temperature impact properties down to  $-60^{\circ}$ C. Excellent slag detachability, smooth beads, good wetting and low hydrogen contents ( $\leq$  5 ml / 100 g) are further important features. The combination is ideally suited for multi-pass welding of thick plates.

For information regarding the sub-arc welding flux BÖHLER BB 24 see our detailed data sheet.

## **Base materials**

Quenched and tempered fine-grained steels with high requirements for low-temperature impact work.

S690Q, S690QL, alform plate 620 M, alform plate 700 M, aldur 620 Q, aldur 620 QL, aldur 620 QL1, aldur 700 QL, aldur 700 QL1

ASTM A 514 Gr. F, H, Q; A 709 Gr. 100 Type B, E, F, H, Q; A 709 Gr. HPS 100W

| Typical analysis of of the wire and of all-weld metal (wt%) |      |      |     |      |     |      |
|-------------------------------------------------------------|------|------|-----|------|-----|------|
|                                                             | С    | Si   | Mn  | Cr   | Ni  | Мо   |
| SAW wire wt%                                                | 0.12 | 0.15 | 1.5 | 0.6  | 2.3 | 0.55 |
| all-weld metal %                                            | 0.06 | 0.3  | 1.5 | 0.50 | 2.2 | 0.50 |

| Mechanical properties of all-weld metal |                                        |                                 |                                                 |                           |        |        |        |
|-----------------------------------------|----------------------------------------|---------------------------------|-------------------------------------------------|---------------------------|--------|--------|--------|
| Condition                               | Yield<br>strength<br>R <sub>p0,2</sub> | Tensile strength R <sub>m</sub> | Elongation A (L <sub>0</sub> =5d <sub>0</sub> ) | Impact work<br>ISO-V KV J |        |        |        |
|                                         | MPa                                    | MPa                             | %                                               | +20 °C                    | -20 °C | -40 °C | −60 °C |
| u                                       | <b>740</b> (≥ 690)                     | <b>850</b> (780 – 890)          | <b>20</b> (≥ 17)                                | 120                       | 90     | 85     | ≥ 47   |

u untreated, as welded

| Operating data |                               |                                                           |                             |  |  |  |
|----------------|-------------------------------|-----------------------------------------------------------|-----------------------------|--|--|--|
| <b>→</b> ↑ ↑ ↓ | <b>Polarity</b> DC (+)/DC (-) | <b>Re-drying of sub-arc flux:</b> 300 – 350 °C / 2 – 10 h | <b>ø (mm)</b><br>3.0<br>4.0 |  |  |  |