

BÖHLER C 9 MV-MC

Metal cored wire, high-alloyed, creep resistant

Classific	Classifications														
EN ISO 17634-B				A	AWS A5.28					AWS A5.28M					
T69T15-1G-9C1MV				E	E90C-B9					E62C-B9					
Characte	Characteristics and typical fields of application														
Metal cored wire for high temperature, creep resistant martensitic 9 – 12 % chromium steels in turbine and boiler fabrication and in the chemical industry. Especially designed for the ASTM steels T91 / P91. For optimised toughness values a welding technology should be applied which produces thin welding layers (approx. 2 mm), also a decisive influence on toughness values is given by the used shielding gas.															
Base ma	terial	S													
1.4903 X	Similar alloyed creep resistant steels 1.4903 X10CrMoVNb9-1, GX12CrMoVNbN9-1 ASTM A 335 Gr. P91, A 336 Gr. F91, A 369 Gr. FP91, A 387 Gr. 91, A 213 Gr. T91														
Typical a	Typical analysis of all weld metal (wt%)														
С			Si	Mn		Cr	Ni M		Мо	V		Nb		Ν	
wt%	wt% 0.10		0.3	0.6		9.0 0.7			1.0 0.2			0.05		0.04	
Mechanical properties of all-weld metal															
Condition		Yield strength $R_{p0,2}$			Tensile strength R_m			Elongation A ($L_0=5d_0$)				Impact work ISO-V KV J			
		MP	/IPa		MPa		%				-	+20 °C			
a 650		650) (≥ 565)		760 (690 - 890)			18	18 (≥ 14)			55 (≥ 32)			
a annealed 760 °C/3 h / furnace down to 300 °C / air – shielding gas Argon + 2.5 % CO_2															
Operating data															
			· · ·		Shielding gas: Argon + 2.5 % CO_2 o Argon + 15 – 20 % CC						Amps A 150 – 290		Voltage V 18 – 30		
appr. 80° Preheatir below 80	Welding with conventional or pulsed power sources (preferably slightly trailing torch position, angel appr. 80°). Recommended stick out $18 - 20$ mm and length of arc $3 - 5$ mm. Preheating and interpass temperature $200 - 300$ °C. After welding, the weld joint should cool down below 80 °C to finish the martensite transformation. In case of greater wall thickness or complex components the possibility of residual stresses must be considered.														

The following post weld heat treatment is recommended: annealing 760 °C / min. 2 h, max. 10 hrs, heating and cooling rates below 550 °C max. 150 °C / h, > above 550 °C max. 80 °C / h.

Positional weld ability of metal cored wires is similar to solid wires.